
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/43694716

Using Complex Event Processing for Dynamic Business Process Adaptation

Article · July 2010

DOI: 10.1109/SCC.2010.48 · Source: OAI

CITATIONS

72
READS

768

3 authors:

Some of the authors of this publication are also working on these related projects:

CORBA-MMS View project

Automatic Program Repair in Production View project

Gabriel Hermosillo

National Institute for Research in Computer Science and Control

15 PUBLICATIONS 230 CITATIONS

SEE PROFILE

Lionel Seinturier

Université de Lille

247 PUBLICATIONS 3,176 CITATIONS

SEE PROFILE

Laurence Duchien

Université de Lille

168 PUBLICATIONS 3,068 CITATIONS

SEE PROFILE

All content following this page was uploaded by Lionel Seinturier on 29 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/43694716_Using_Complex_Event_Processing_for_Dynamic_Business_Process_Adaptation?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/43694716_Using_Complex_Event_Processing_for_Dynamic_Business_Process_Adaptation?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CORBA-MMS?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automatic-Program-Repair-in-Production?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel-Hermosillo?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel-Hermosillo?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_Institute_for_Research_in_Computer_Science_and_Control?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gabriel-Hermosillo?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Seinturier?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Seinturier?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Lille?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Seinturier?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurence-Duchien?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurence-Duchien?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Lille?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Laurence-Duchien?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Lionel-Seinturier?enrichId=rgreq-b096a4b1a3b51f2e9cae5d99f5740bec-XXX&enrichSource=Y292ZXJQYWdlOzQzNjk0NzE2O0FTOjEwMjIyOTEwOTM3OTA4N0AxNDAxMzg0NzI3ODY4&el=1_x_10&_esc=publicationCoverPdf

Using Complex Event Processing for Dynamic Business Process Adaptation

Gabriel Hermosillo, Lionel Seinturier, Laurence Duchien
INRIA Lille Nord Europe - University of Lille 1

Laboratoire LIFL - CNRS UMR 8022
Lille, France

Email: firstname.lastname@inria.fr

Abstract—As the amount of data generated by today’s
pervasive environments increases exponentially, there is a
stronger need to decipher the important information that is
hidden among it. By using complex event processing, we can
obtain the information that really matters to our organization
and use it to improve our processes. However, even when
this information is retrieved, business processes remain static
and cannot be changed dynamically to adapt to the actual
scenario, diminishing the advantages that can be achieved. In
this paper we present CEVICHE, a framework that combines
the strengths of complex event processing and dynamic business
process adaptation, which allows to respond to the needs of
today’s rapidly changing environments. We use a simple car
rental scenario to show how CEVICHE could be used to
maintain the quality of service of a business process by adapting
it according to the situation.

Keywords-Complex Event Processing; BPEL; process adap-
tation; QoS

I. INTRODUCTION

Given the dynamicity of today’s business environments,
there is a need to continuously adapt the business processes
in order to respond to the changes in those environments
and keep a competitive level. One of the main concerns for
on-line applications is to keep a high Quality of Service
(QoS), for which they need to keep a constant monitoring of
their processes. By using Complex Event Processing (CEP)
we can facilitate the solution of this problem by gathering
information about the different steps of the processes in
order to determine whether a situation of low QoS is
approaching. CEP is an emerging technology which allows
to find real-time relationships between different events using
elements such as timing, causality, and membership in a
stream of data in order to extract relevant information [1].

CEP can be used, for example, to prevent the theft of
merchandise from stores by creating relationships between
the amount, kind, and movement of the products inside the
store and sending an alert when a suspicious situation is
detected [2]. However, there are some occasions in which
it is not enough just to be able to obtain this information
from simple raw data. For example, when monitoring the
QoS, we could alert the administrator when the process is
not responding as expected, but an optimal response would
be to automatically adapt the business process according to
the new context in order to continue in an optimal way,

and this is why we developed CEVICHE (Complex EVent
processIng for Context-adaptive processes in pervasive and
Heterogeneous Environments).

The purpose of CEVICHE is to create context-aware
business processes that are able to adapt dynamically in
order to respond to different scenarios. CEVICHE relies on
BPEL, since it is the most common orchestration language,
it is an OASIS standard and it is an execution language and
not a modeling language (like BPMN), and in CEVICHE
the adaptation of the business process happens at runtime
during the execution [3]. The decisions of how to respond to
a specific scenario are done by collecting data from different
sources and transforming it into useful information, using
CEP. By using an aspect-oriented approach, we can define
alternative processes that can be woven into the business
process at runtime, allowing the business process to adapt
in a dynamic way.

In this paper we use an on-line car rental application to
show how CEP, and specially CEVICHE, can be used to
maintain a high QoS by monitoring the business process and
adapting it accordingly to respond to the context information
gathered by the system.

The objectives in this paper are:
• To show why dynamic adaptation is needed in today’s

business processes.
• To integrate CEP into business processes to help in the

decision making task.
• To provide a framework that facilitates such integration

by giving the users a unique entry point to create
dynamically adaptable business processes.

The rest of this paper is organized as follows. In Section
II, we use a scenario to illustrate the motivation and chal-
lenges of our proposal. Section III presents a background of
the different domains used in this paper. Section IV explains
the CEVICHE framework and its architecture. In Section
V, we discuss our proposal and present some validations.
Section VI presents some of the related work. Finally,
section VII concludes and discusses some future work.

II. MOTIVATION AND CHALLENGES

In this section we present our motivation by using a small
car rental scenario in which we want to monitor the QoS.

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0
Author manuscript, published in "Proceedings of the 7th IEEE 2010 International Conference on Services Computing (SCC 2010),

Miami, Florida : United States (2010)"
 DOI : 10.1109/SCC.2010.48

http://dx.doi.org/10.1109/SCC.2010.48
http://hal.archives-ouvertes.fr/inria-00482578/fr/
http://hal.archives-ouvertes.fr

After that we present the challenges that we face when using
static business processes.

A. Motivation

To show how CEP and CEVICHE can be used to maintain
a high QoS we present an on-line car rental service. In
this service, the client goes through a process of eleven
steps to get a car, as shown in Fig. 1. The client starts the
process by providing a valid license number, then selects
the characteristics of the car to rent and finally pays and
receives a confirmation from the system.

Figure 1. The car rental process

Whenever the application is getting a considerable amount
of traffic, that could decrease the response time of the
servers, the owners of the on-line application want to avoid
the invocation of some optional tasks of the business process.
This will help to maintain the QoS and allow the user to
complete the car rental process in fewer steps and to spend
less time waiting for the application to respond.

The optional tasks that could be excluded from the
business process of this scenario, without altering the main
objective, are: the color select (step c) and the satisfaction
survey (step j). To skip them, an additional path from the
preceding activity to the next will have to be set. Then,
the process will have to be redeployed and the application
restarted, for the changes to be considered.

In this scenario, the QoS is considered with two param-
eters: service performance and service availability. The per-
formance of a web service can be measured by considering
the time it takes to respond to a user query, while the service
availability can be simply measured by the existence or not
of a response from the service.

B. Challenges

When we want to monitor the business process and adapt
it accordingly to respond to current situation, we face several
challenges that make it difficult to accomplish.

Challenge 1: The first challenge we have in this
scenario is the lack of specification in the BPEL standard
to monitor the business processes, thus leaving each BPEL
engine implementation to decide whether or not to include
a monitoring interface [3]. But even when the BPEL engine

used provides a monitoring interface, it does not necessarily
mean that it will provide the precise information that we
want to monitor.

Challenge 2: As our next challenge, we face that
even when we could monitor the business process, the
identification of a situation that needs the process to be
adapted (like a low QoS), will add a lot of unnecessary code
to the core business process definition, and in some cases
will be impossible to specify using only BPEL.

Challenge 3: The last challenge that we face when
using BPEL engines is that the process definitions are static,
which means that we cannot adapt the business process with-
out redeploying it, thus generating a downtime of the system
and losing all the information of the current transactions. The
only changes possible at runtime are the bindings to partner
links, but they have to be previously defined at deploy-time
and we cannot add new partner links at runtime [4].

III. BACKGROUND

In this section, we present a brief introduction to the
four main domains addressed in this paper: complex event
processing, business process execution language, quality of
service and aspect oriented programming.

A. Complex Event Processing

CEP is an emerging technology for finding relationships
between series of simple and independent events from
different sources, using previously defined rules [1]. The
CEP technology can be used, among a lot of other things,
to enrich the enterprise’s existing processes, by introducing
rules that will allow the capture of relevant information from
the different steps of their business process [5].

For example, let us consider the scenario of a retail store
that keeps a record of its inventory in an existing Enterprise
Resource Planning (ERP) system and wants to keep a live
monitoring of its stocks in order to prevent shortage. To
achieve this, the store installs a CEP engine that will monitor
the products movements through their life cycle in the store
process by receiving and analyzing all the events generated
by every change in the state. Since the objective is to
monitor inventory, the CEP engine will only keep the events
related to changes in the inventory and forget about the rest.
By creating the necessary CEP rules, the configuration is
set to specify the lowest acceptable stock of product that
the store can have to avoid a shortage, e.g., a 10% for
normal products and a 5% for some low-demand products.
Whenever a product reaches a minimum, the CEP engine
alerts the managers so they can make a supply order.

In addition to that, CEP can also be used to predict
unexpected situations. To complement the previous example,
we can say that because of a global pandemic alert, hand
sanitizers are very popular and are selling a lot more than
usual. Given this demand, the store will run out of hand
sanitizer before they can resupply it, even with the minimum

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

stock alert. By adding some specialized CEP rules to analyze
the frequency of sells of each product during the last 4 or 5
hours, the engine could polarize these values to know in
advance (if the sells rates are kept) that it will need to
resupply before the expected time, which will allow them
to react in time even before it reaches the minimum level.

B. Business Process Execution Language

The Business Process Execution Language (BPEL) is
an XML-based language for composing services, created
by IBM, BEA Systems and Microsoft in 2002, and later
approved as an OASIS Standard as WS-BPEL 2.0 [3].
There are two types of service composition: orchestration
(execution) and choreography (control). BPEL is an orches-
tration language, which means that it focuses on the flow
of control and data among the different services of the
business process, rather than on the specification of peer-
to-peer collaboration.

BPEL uses web services as a way to communicate with
the different parties involved in the business process. It has
two types of activities: primitive and structured. The former
refers to atomic or single activities while the latter refers
to composite activities (a combination of several activities).
Some instructions like invoke, receive or assign
refer to the primitive activities, while sequence and flow
are part of the structured activities and refer to the order in
which the activities will execute.

In order to interact with the different parties of the
business process (called partners), we need to define a
partner link, which specifies the roles of the partner and the
caller. We also need to define the different input and output
variables that we will use to send information to and receive
information from the service. Finally, BPEL also provides
some facilities for transaction and exception handling.

C. QoS in Web Services

The goal of the Web Services effort is to achieve inter-
operability between applications by using Web standards.
Web Services use a loosely coupled integration model to
allow flexible integration of heterogeneous systems in a va-
riety of domains including business-to-consumer, business-
to-business and enterprise application integration [3]. Web
services are the most popular technology to implement the
service-oriented architecture and they use open Internet-
based standards, like the Simple Object Access Protocol
(SOAP) for data transmission, the Web Services Description
Language (WSDL) for defining services, and BPEL for
orchestrating services [6].

When these web services are used as part of a whole
process, the QoS of the process depends on the QoS of the
web services composing it. But, in order to use the services
provided through the Internet by the different organizations,
the users of those services need to know what to expect from

them, in terms of QoS, so that they can offer a decent QoS
to their own users.

The study of QoS for web services is not new, and
there have been a good number works discussing how to
estimate the QoS of a web service-based workflow [7],
[8], [9], [10]. Also, in order to measure the QoS of the
web services, many metrics have been proposed in the
literature [7], [11], [12], [8], [13]. The QoS attributes can be
classified as deterministic or non-deterministic. The former
means that the attributes are already known before the
execution of the service (e.g., price, server location). The
latter refers to the attributes that are unknown before the
execution (e.g., response time, availability). The monitoring
of these attributes can be achieved in two ways: server-side
monitoring or client-side monitoring. Since the user of the
services does not always have the control of the hosting
servers, we will focus on the client-side monitoring for our
scenario.

As we mentioned in Section II, our scenario measures the
QoS using two parameters: performance and availability. To
calculate those values we will use the formulas provided by
Oliver et al. in [11], as shown in Table I.

QoS Attribute Formula

Performance 1
#requests

∑
requestT imei

Availability 1− uptime
downtime

Table I
QOS ATTRIBUTES

D. Aspect Oriented Programming

The domain of Aspect-Oriented Programming (AOP) ap-
peared in 1996 [14], [15]. It was pioneered by Gregor
Kiczales and his team, then at the Xerox Palo Alto Research
Center. While original and innovative, the domain of AOP
inherits results from other programming approaches, such
as reflection, open implementations, meta-object protocols,
and generative programming.

AOP, as a new programming paradigm, introduces no-
tions such as aspect, join point, pointcut and advice code.
However, these notions do not replace existing ones, such
as class, object, procedure or method. Rather, AOP must
be seen as a complement to these existing techniques.
Furthermore, these notions are not specific to a programming
style (e.g., object-oriented or procedural) or a given syntax
(Java, C#, Ada, COBOL, etc.). Aspect-oriented extensions
exist for many languages, object-oriented or procedural, and
in this case, BPEL.

AOP has been proposed as a technique for improving the
separation of concerns in software systems and for adding
crosscutting functionalities without changing the business
logic of the software. AOP provides specific language mech-
anisms that make it possible to address concerns, such as

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

Figure 2. The CEVICHE framework

security, in a modular way. AOP languages and tools can
be applied at compile-time or at run-time, this giving the
designer the flexibility to use them in the most appropriate
moment.

IV. THE CEVICHE FRAMEWORK

In this section we present the CEVICHE framework. We
start by giving an overview of the system, then we present
the architecture and finally we explain how the process
adaptation is realized.

A. Overview

CEVICHE is a framework that intends to facilitate the
integration of CEP into existing business processes and to
allow these processes to be dynamically adapted to different
circumstances. With this framework we want to address
mainly four issues: adaptation, dynamicity, integration to
business process, and non-dependency to a specific CEP
engine.

To address the first issue, adaptation, we use an approach
based on AOP [14]. This approach allows the system to add
or change services from the current business process and
facilitates the task of separating concerns. To do this, AOP
needs to know in which part of the business process it needs
to perform the adaptation (the pointcut). Using the pointcuts,
we can tell the AOP framework what special behavior (the
advice code) we want to apply in that part of the business
process. Once the advice code is woven, the process is
adapted.

By analyzing the current events with CEP and using
context information, CEVICHE can automatically decide
when and how to adapt the system. This adaptation can be
done at runtime, thanks to the advantages of using an aspect-
oriented approach, thus giving a solution to the dynamicity
issue.

To integrate BPEL with AOP, we use the AO4BPEL
framework [16], which creates a wrapper around the BPEL
interpreter and has the ability to weave the aspects at runtime
to the business process. The advantage of using AO4BPEL
is that we can change the business process specifications at
runtime without the need to redeploy them, avoiding to lose
all the ongoing transactions by doing that. In CEVICHE we
integrate the AO4BPEL framework with CEP, allowing us
to give a solution to the third issue.

Finally, CEVICHE aims to be able to work with any
CEP engine available. For that, as part of this framework,
we define a language called the Standard Business Process
Language (SBPL), which gathers all the information about
the processes, contextual environment, business rules, and
adaptation conditions. This information is saved in an XML
file that CEVICHE translates to the chosen CEP engine
using the corresponding translation plug-in of that engine.
This approach allows the users to define their business
processes only once and deploy them using their preferred
CEP engine.

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

1 < a s p e c t name=" M o n i t o r i n g A s p e c t ">
2 < p a r t n e r L i n k s >
3 < p a r t n e r L i n k name=" P e r f o r m a n c e M o n i t o r " p a r t n e r L i n k T y p e =" Pe r fo rman ceL ink "
4 myRole=" c a l l e r " p a r t n e r R o l e =" m o n i t o r " / >
5 < / p a r t n e r L i n k s >
6 < v a r i a b l e s >
7 < v a r i a b l e name=" a c t i v i t y S t a r t " messageType=" a c t i v i t y S t a r t N a m e " / >
8 < v a r i a b l e name=" a c t i v i t y S t a r t T i m e " messageType=" s t a r t T i m e " / >
9 < v a r i a b l e name=" a c t i v i t y S t o p " messageType=" a c t i v i t y S t o p N a m e " / >

10 < v a r i a b l e name=" a c t i v i t y S t o p T i m e " messageType=" s topTime " / >
11 < / v a r i a b l e s >
12 < p o i n t c u t a n d a d v i c e >
13 < p o i n t c u t name=" p e r f o r m a n c e " c o n t e x t C o l l e c t i o n =" t r u e ">
14 / / i n vo ke []
15 < / p o i n t c u t >
16 < a d v i c e t y p e =" a round ">
17 < s e q u e n c e >
18 < a s s i g n >
19 <copy>
20 <from v a r i a b l e =" T h i s J P A c t i v i t y " p a r t =" name " / >
21 < t o v a r i a b l e =" a c t i v i t y S t a r t " p a r t =" a c t i v i t y N a m e " / >
22 < / copy>
23 < / a s s i g n >
24 < in vo ke p a r t n e r L i n k =" P e r f o r m a n c e M o n i t o r " p o r t T y p e =" Pe r fo rmanc eL ink "
25 o p e r a t i o n =" s t a r t T i m e r " i n p u t V a r i a b l e =" a c t i v i t y S t a r t "
26 o u t p u t V a r i a b l e =" a c t i v i t y S t a r t T i m e " / >
27 < p r o c e e d / >
28 < a s s i g n > . . . < / a s s i g n >
29 < in vo ke p a r t n e r L i n k =" P e r f o r m a n c e M o n i t o r " p o r t T y p e =" Pe r fo rmanc eL ink "
30 o p e r a t i o n =" s t o p T i m e r " i n p u t V a r i a b l e =" a c t i v i t y S t o p "
31 o u t p u t V a r i a b l e =" a c t i v i t y S t o p T i m e " / >
32 < / s e q u e n c e >
33 < / a d v i c e >
34 < / p o i n t c u t a n d a d v i c e >
35 < / a s p e c t >

Figure 3. The performance monitoring aspect

B. CEVICHE Architecture

CEVICHE is composed of three main parts: a user in-
terface to create the SBPL files, a translation framework to
manage the plug-ins for each CEP engine, and an aspect
manager to deal with the process adaptation. CEVICHE
also relies on different technologies to achieve the process
adaptation, as shown in Fig. 2.

To configure the system, the user is provided with an
interface to capture the different elements needed to adapt
the processes, which are then saved to an SBPL file. The
SBPL is an extension of BPEL which allows the user to
include, in the business process definitions, the adaptation
points and conditions in order to create dynamically adapt-
able business processes. The information in the SBPL file is
sent to the translation framework, which separates the data
in three parts: the business process (BPEL), the adaptation
situations (CEP rules) and the aspects to adapt the process.
Since there is no standard to define the CEP rules, the
translation framework uses a specialized plug-in to send the
adaptation information in the SBPL file in the specific CEP
engine’s format. This way, whenever the user wants to use
another CEP engine, the only thing that needs to be done is
to change the plug-in, without rewriting all the specifications
of the business processes.

Once the initial setup is ready and all the components
have been properly configured, the process starts and the

information begins to flow from one component to the
other, as seen in Fig. 2. First, the CEP engine subscribes
to the different sources of events, here called the events
cloud, which will provide the engine with the information
it needs to take decisions and create complex events.

The CEP engine will gather all the events, filter the
interesting ones according to the business rules and find
relations that can generate complex events. When an adapta-
tion situation is detected, the CEP engine notifies the aspect
manager, which in turn searches for the corresponding aspect
to adapt the business process. Once the aspect is selected,
CEVICHE uses the AO4BPEL engine to weave the code
into the process, adapting it at runtime.

C. Process adaptation

CEVICHE uses an aspect-oriented approach, which al-
lows the system to add and remove functionality at runtime.
When this approach is applied to the business processes, it
allows them to be dynamically adapted.

With AO4BPEL we can handle two types of aspect
deployments: process-level deployment and instance-level
deployment [16]. The former is used when the aspect is
needed in all the instances of the business process, while
the latter is used when only a specific kind of instances are
targeted.

The process can be adapted using three kind of advices:
before advice, after advice and around advice. The first

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

one intercepts the call before the joinpoint, executes its task
and then lets the process continue the normal flow, including
the execution of the joinpoint activity. The after advice gets
executed just after the joinpoint activity is completed and the
process continues normally afterwards. Finally, the around
advice intercepts the call just like the before advice, but
it adds functionality before and after the join point activity.
Moreover, this advice can be used without executing the
joinpoint activity.

An example of an aspect definition can be seen in Fig.
3. In this example we see the use of the special reflexive
variable ThisJPActivity (line 20), which refers to the join
point (the intercepted activity). This variable can obtain all
the information of the join point, in this case the name, so
that it can be used by the advice.

We can also have a pool of different services that can
replace the original one and we can even have a historical
QoS rating for each one, that will allow us to select the best
option. This pool of services can even include composite
services, which can replace the original one.

V. DISCUSSION AND VALIDATION

In this section, we present how we can use CEVICHE
to deal with the challenges presented in Section II. In a
nutshell, we had three main challenges in our scenario: QoS
monitoring, identification of special situations and dynamic
adaptation.

Challenge 1: For the monitoring of the QoS, in our car
rental scenario, we created an around advice. This advice
is deployed at process-level, since we want to monitor
all the instances of the business process. In the advice
we include four additional activities, two before and two
after the joinpoint. The first activity is used to count the
number of times the joinpoint activity is called, then it
calls the second activity which records the start time of the
joinpoint activity. Once the joinpoint activity is executed,
the third extra activity is called. This activity measures the
duration of the invocation by subtracting the starting time
from the current time, thus getting the performance of the
activity for that invocation. The final activity is used to count
the number of times the joinpoint has been successfully
executed to calculate the availability. By using this two
metrics (performance and availability) we can monitor the
QoS of the business process.

Challenge 2: To identify the special situations where
the process needs to be adapted, we created some CEP rules
using the formulas presented in Section III-C. Whenever the
performance of the car rental process dropped more than
25% or an activity was not available, the CEP engine notified
CEVICHE.

Challenge 3: When CEVICHE received the notification
about the drop in performance, it automatically deployed the
instance-level aspect that skipped the two optional tasks
of the car rental scenario: the color select (step c) and

the satisfaction survey (step j). When the notification was
about an unavailable service, then CEVICHE searched for
alternative service from the pool. If an alternative service
is found in the service pool, then an aspect deployed at
instance-level to change the service. We tried this by turn-
ing off the insurance selection service (step f) in the car
rental process and CEVICHE automatically changed to an
alternative service of another provider. The adaptation of the
business process was done dynamically and automatically,
without loosing any information from the different instances
of the process.

Performance: As it can be expected, the inclusion
of aspects to dynamically adapt the process, as well as a
CEP engine to discover the adaptation situations, require
some additional time and resources. This overhead may vary
depending on the number of rules that need to be processed
by the CEP engine and the complexity of the aspects that
will be woven. However, the overhead induced to the original
process is negligible compared to the cost of the whole
process, specially when dealing with Internet interactions
with partners. The AO4BPEL engine adds only an overhead
of 1% of the execution time, and could be even less when
the processes are bigger, since the cost is mostly the same
for the whole system and does not vary in terms of the
number of activities. For the CEP engine, the overhead is
also insignificant, taking it less than 1 ms to process each
event through the whole set of rules. In this case we used
the Esper engine, which is an open source stream event
processing engine [17]. The efficiency of the CEP engine
to process the events is such that it exceeds over 500,000
events per second.

VI. RELATED WORK

CEP and BPEL: As mentioned earlier in this paper,
CEP is an emerging technology and the use of it in the
business processes is a recent topic of interest and research
[18], [19]. An analysis of scenarios of composite event
patterns comparing BPEL and BPMN is done in [18]. The
authors analyze patterns of events that go from conjunction
and cardinality to time relations and event consumption
possibilities. The conclusion of their study is that neither
BPEL nor BPMN are capable of supporting complex event
scenarios in their specifications, so there is a need to inte-
grate event pattern descriptions into the process definitions
language, but they do not mention the need to adapt the
process according to those complex events.

In [19], we present a service to add traceability to the
RFID tagged products by using Complex Event Processing.
When the RFID events are captured, they are transformed
into business events that correspond to the business rules
defined in the process which allows the users to have a
better understanding of the status of their products, i.e., the
product’s location and the environment it has been exposed
to.

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

Business process adaptation: The need to adapt a
process has been a topic of interest in the recent years and
there have been different approaches that offer solutions to
it [20], [21], [22], [23]. In [20], the authors propose to deal
with process adaptation by adding a web service repository
that will handle the web services to invoke in each case.
Whenever an invocation of a web service is done, the call is
intercepted and the repository is checked for changes in the
process definition, before the invocation of a web service. If
there have been some changes, then it examines the available
web services in the repository and chooses the one that best
suits the criteria, otherwise the invocation is executed as
usual.

The authors in [21] use an aspect-oriented approach in-
troducing executable models, which are used to repre-
sent the cross-cutting concerns. They use open objects,
which are representations of the state of the elements in the
model, to monitor the invocation of services and adapt the
process by weaving the interaction with other models before
(activation) and after (deactivation) the call to the service.

Another aspect oriented implementation, using the Spring
.NET framework, is presented in [22]. They use a contract-
based approach to assign a web service to each instance
of an execution call. To achieve adaptation of the process
they can change the contract at runtime to assign a new
web service for the call. They can also adapt an existing
implementation of a web service by using aspects to weave
the new behavior.

An adaptation of the BPEL language called VxBPEL is
presented in [23]. The authors insist on the need of flexibility
and variability in the service-based systems and the lack
of them when deploying BPEL processes. They extend the
BPEL language to add new elements like Variation
Points, which are the places where the process can be
adapted and Variants, which define the alternative steps
of the process that can be used. VxBPEL also accepts new
Variants to be added at runtime, allowing the systems to
be adapted without redeploying the process.

BPEL context adaptation: The work that is closer to
our proposal is the one presented in [24]. The authors present
a plug-in based architecture for self-adaptive processes that
uses AO4BPEL. Their proposal is to have different plug-
ins with a well-defined objective. Each plug-in will have
two types of aspects: the monitoring aspects that
will check the system to observe when an adaptation is
needed and the adaptation aspects that will handle
the situations detected by the monitoring aspects. Whenever
the conditions of a monitoring aspect are met, it
uses AO4BPEL to weave the adaptation aspects into
the process at runtime. In our approach we deal with the
monitoring part using the rules deployed in the CEP engine,
which will detect special situations (by relating simple
events) and select the aspects to be used to adapt the process.

An advantage of their work is that the monitoring aspects

can be hot-deployed to their BPEL engine while with our
approach the changes in the rules might not be considered at
runtime, depending on the CEP engine. On the other hand,
this difference also shows an advantage for our proposal,
since we are not tied to a single engine and we can use
any CEP rules already defined for the monitoring process,
while in their case we would need to create a new plug-in
for each new situation we want to monitor. Also, even if we
needed to restart the CEP engine in order to consider the new
rules, this would not affect any active running processes, as
it would if we restarted the BPEL engine.

VII. CONCLUSIONS AND FUTURE WORK

Process adaptation and Complex Event Processing are
two topics that are creating a lot of interest in the research
community, however there is still no integration of both
domains. In this paper we presented CEVICHE, a frame-
work that intends to facilitate the integration of CEP into
existing business processes and to allow these processes
to be dynamically adapted to different circumstances. With
CEVICHE we addressed four issues: adaptation, dynamicity,
integration to business process, and non-dependency to a
specific CEP engine. As part of the CEVICHE framework,
we proposed the SBPL, an extension of BPEL that allows
the user to include the adaptation points and conditions in
order to create dynamically adaptable business processes.
The SBPL uses special plug-ins to deal with the different
languages of the CEP engines, allowing the users to write
their process specifications only once and deploy it in the
engine they want. Using a simple car rental scenario we
showed how CEVICHE can be used to monitor the QoS
of a business process and adapt it dynamically to keep a
competitive level whenever the QoS dropped, without the
need to redeploy the process and without loosing any current
transactions.

Thanks to the modular architecture of CEVICHE, it is not
strongly linked to any third party technology. Even though,
for the moment we use AO4BPEL to deal with dynamic
adaptation of business processes, we could change it for
any other technology that allows us to do better dynamic
adaptation, or even develop our own. This architecture
also allows our work to be componentized in the future,
facilitating the integration with other technologies and the
interaction with the different parts of the architecture. We
also plan to work on the definition of a RESTful architecture
to leverage on the deployment of CEVICHE components
and facilitate the evolution of the architecture by adding or
changing components. We are still working with the SBPL
in order to have a very vast coverage of the CEP needs, and
for the moment we only have some basic support for SQL
based CEP engines like Esper.

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

REFERENCES

[1] D. C. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[2] N. Huber and K. Michael, “Minimizing Product Shrinkage
across the Supply Chain using Radio Frequency Identifica-
tion: a Case Study on a Major Australian Retailer,” in ICMB
’07: Proceedings of the International Conference on the
Management of Mobile Business. IEEE Computer Society,
2007, p. 45.

[3] “OASIS Standard. Web Services Business Process Execution
Language Version 2.0,” http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.html, April 2007.

[4] M. B. Juric, Business Process Execution Language for Web
Services BPEL and BPEL4WS 2nd Edition. Packt Publishing,
2006.

[5] T. Ku, Y. Zhu, and K. Hu, “A Novel Complex Event
Mining Network for Monitoring RFID-Enable Application,”
in PACIIA ’08: Proceedings of the 2008 IEEE Pacific-Asia
Workshop on Computational Intelligence and Industrial Ap-
plication. IEEE Computer Society, 2008, pp. 925–929.

[6] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“Service-oriented computing: State of the art and research
challenges,” Computer, vol. 40, no. 11, pp. 38–45, November
2007.

[7] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut,
“Quality of service for workflows and web service processes,”
Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 1, no. 3, pp. 281 – 308, 2004.

[8] M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “Qos aggre-
gation for web service composition using workflow patterns,”
in EDOC ’04: Proceedings of the Enterprise Distributed
Object Computing Conference, Eighth IEEE International.
IEEE Computer Society, 2004, pp. 149–159.

[9] H.-C. Wang, C.-S. Lee, and T.-H. Ho, “Combining subjective
and objective qos factors for personalized web service selec-
tion,” Expert Systems with Applications, vol. 32, no. 2, pp.
571 – 584, 2007.

[10] L. Zeng, B. Benatallah, A. H.H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware for
web services composition,” IEEE Trans. Softw. Eng., vol. 30,
no. 5, pp. 311–327, 2004.

[11] O. Moser, F. Rosenberg, and S. Dustdar, “Non-intrusive
monitoring and service adaptation for ws-bpel,” in WWW ’08:
Proceeding of the 17th international conference on World
Wide Web. ACM, 2008, pp. 815–824.

[12] M. Gillmann, G. Weikum, and W. Wonner, “Workflow man-
agement with service quality guarantees,” in SIGMOD ’02:
Proceedings of the 2002 ACM SIGMOD international con-
ference on Management of data. ACM, 2002, pp. 228–239.

[13] C. Patel, K. Supekar, and Y. Lee, “A qos oriented framework
for adaptive management of web service based workflows,”
in DEXA, 2003, pp. 826–835.

[14] G. Kiczales, J. Lamping, A. Mendheka, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-Oriented Pro-
gramming,” in Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), ser. Lecture Notes
in Computer Science, S. Gjessing and K. Nygaard, Eds., no.
1241. Springer, June 1997.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold, “An overview of aspectj,” in ECOOP
’01: Proceedings of the 15th European Conference on Object-
Oriented Programming. Springer-Verlag, 2001, pp. 327–353.

[16] A. Charfi and M. Mezini, “Ao4bpel: An aspect-oriented
extension to bpel,” World Wide Web, vol. 10, no. 3, pp. 309–
344, 2007.

[17] EsperTech, “Esper,” http://esper.codehaus.org/.

[18] A. P. Barros, G. Decker, and A. Großkopf, “Complex events
in business processes,” in BIS, 2007, pp. 29–40.

[19] G. Hermosillo, J. Ellart, L. Seinturier, and L. Duchien,
“A Traceability Service to Facilitate RFID Adoption in the
Retail Supply Chain,” in Proceedings of the 3rd International
Workshop on RFID Technology - Concepts, Applications,
Challenges IWRT 2009. INSTICC Press, Portugal, 05 2009,
pp. 49–58.

[20] F. A. A. Lins, J. C. dos Santos Júnior, and N. S. Rosa,
“Adaptive web service composition,” SIGSOFT Softw. Eng.
Notes, vol. 32, no. 4, p. 6, 2007.

[21] M. Sánchez and J. Villalobos, “A flexible architecture to
build workflows using aspect-oriented concepts,” in AOM ’08:
Proceedings of the 2008 AOSD workshop on Aspect-oriented
modeling. ACM, 2008, pp. 25–30.

[22] S. S. u. Rahman, N. Aoumeur, and G. Saake, “An adap-
tive eca-centric architecture for agile service-based business
processes with compliant aspectual .net environment,” in
iiWAS ’08: Proceedings of the 10th International Conference
on Information Integration and Web-based Applications &
Services. ACM, 2008, pp. 240–247.

[23] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou, “Vxbpel:
Supporting variability for web services in bpel,” Inf. Softw.
Technol., vol. 51, no. 2, pp. 258–269, 2009.

[24] A. Charfi, T. Dinkelaker, and M. Mezini, “A plug-in archi-
tecture for self-adaptive web service compositions,” in ICWS
’09: Proceedings of the 2009 IEEE International Conference
on Web Services. IEEE Computer Society, 2009, pp. 35–42.

in
ria

-0
04

82
57

8,
 v

er
si

on
 1

 -
10

 M
ay

 2
01

0

View publication statsView publication stats

https://www.researchgate.net/publication/43694716

